
Statistics 291: Lecture 5 (February 6, 2024)

Kac-Rice I: General Formula

Instructor: Mark Sellke

Scribe: Zad Chin

1 Addendum on ∇HN ,p(x)

Recall that we are interested in

max
x∈SN

HN ,p (x) ≤ M̄ ≡ N−(p−1)/2 max
x(1),··· ,x(p)∈SN

〈G (p)
N , x(1) ⊗·· ·⊗x(p)〉whp≤C N ,

where C =C (p) for some constant C (p).

Proposition 1.1. The following equality holds

sup
x∈SN

∥∥∇HN ,p (x)
∥∥≤ pM̄/

p
N

whp≤ pC
p

N .

Proof. By a simple exercise in tensor algebra, we obtain

〈∇HN ,p (x), y〉 = N−(p−1)/2 d

d t
〈G (p)

N , (x + t y)⊗·· ·⊗ (x + t y)〉 |t=0

= N−(p−1)/2〈G (p)
N , y ⊗x⊗p−1 +x ⊗ y ⊗x⊗p−2 +·· ·+x⊗p−1 ⊗ y〉

≤ pM̄ .

A related exercise is to prove that

max
x∈SN

∥∥∇2HN ,p (x)
∥∥

op

whp≤C ′,

where the operator norm above means the maximum absolute eigenvalue and C ′ =C ′(p) is some constant.

2 Critical Points

In previous lectures, we observed that the overlaps are close to 1 for low temperature. Mathematically,

E |R(x, x̃)| ≥ 1−O(1/β),

where x and x̃ are i.i.d. from µβ. This suggests that µβ clusters are around (near-global) local optima. As
such, we will discuss how to count critical points, local maxima, and so on. This is relevant for optimization.
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2.1 The 1-Dimensional Case

The question we are interested in solving is the following:

Question 2.1. Let f : I →R, for I ⊆R an interval, be a random smooth function. Then, how many zeros does
f have on average? In other words, what is E|zeros( f )|?
One guess might be the approximation

E|zeros( f )| =
∫

I
ϕ f (u)(0)du,

where ϕ f (u) is the probability density for the random variable u 7→ f (u). However, this fails since it is not
even scale-invariant: clearly E|zeros( f )| = E|zeros(2 f )|, but our approximation for these two quantities is
different (one is half of the other!). A semi-rigorous derivation of the correct formula is as follows:

E|zeros( f )| = E ∑
z∈zeros( f )

1

≈ E ∑
z∈zeros( f )

1

2δ

∫ z+pδ

z−pδ
1| f (u)|≤δ

∣∣ f ′(u)
∣∣ du

= E 1

2δ

∫
I

1| f (u)|≤δ
∣∣ f ′(u)

∣∣ du

d↓0≈
∫

I
ϕ f (u)(0)E[| f ′(u)| | f (u) = 0]du,

where the last equation follows from noting that

E[1| f (u)|≤δ| f ′(u)|] =P[| f (u)| ≤ δ]E[| f ′(u)| | | f (u)| ≤ δ].

In fact, this is a big general theorem.

Theorem 2.2. (Kac-Rice Formula) Call a gaussian process f : I →R is nice if

• f ∈C ′(I ) a.s.;

• Var[ f (u)] > 0 for all u ∈ I ;

• There are (a.s.) no double roots (i.e. u such that f (u) = f ′(u) = 0).

Then, we have the equality

E|zeros( f )| =
∫

I
ϕ f (u)(0)E[| f ′(u)| | f (u) = 0]du,

and this is known as the Kac-Ric formula.

Remarks.

(a) The gaussian hypothesis is not really needed. However, it makes using the formula much easier
because we know how to deal with conditioning by gaussians much better than even other simple
continuous random variables, e.g. uniforms.

(b) The original paper Kac (1943) did a similar gaussian example. However, proving that this formula
holds more universally is still considered modern research.

(c) An example of a gaussian process that is “not nice” is the following: let f (u) = g u2, where g ∼N (0,1).
Then, the Kac-Rice formula gets “confused” and yields 0 ·∞ at u = 0.
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Example. We will consider the example

f (u) =
∞∑

i=0
gi ui , I = [−a, a], 0 < a < 1,

with the gi i.i.d. N (0,1). Note that ( f (u), f ′(u)) is a centered gaussian with:

• E[ f (u)2] = 1+u2 +u4 +·· · = 1
1−u2 ;

• E[ f ′(u)2] = 1+4u2 +9u4 +·· · = 1+u2

(1−u2)3 ;

• E[ f (u) f ′(u)] = u +2u3 +3u5 +·· · = u
(1−u2)2 .

Moreover, ϕ f (u)(0) =
√

1−u2

π , and Var[ f ′(u) | f (u)] = 1
(1−u2)3 and so

E[| f ′(u)| | f (u) = 0] =
√

2

π
(1−u2)−3/2.

Then, by the Kac-Rice formula,

E|zeros( f )| =
∫ a

−a
ϕ f (u)(0)E[| f ′(u)| | f (u) = 0]du

=
∫ a

−a

√
1−u2

π

√
2

π
(1−u2)−3/2 du

= 1

π

∫ a

−a

du

1−u2

= 2 arctanh(a)

π

≈ log
( 1

1−a

)
π

.

2.2 The N -Dimensional Case

Remarks. In this case, “nice” implies that there are no x such that f (x) = 0 and det JF (x) = 0.

Theorem 2.3. In the N -dimensional case, we have the following two results.

(a) Let f :RN →RN be a nice gaussian process, and U ⊆RN an open set. Then,

E|zerosU (F )| =
∫

U
ϕF (x) (⃗0)E

[|det JF (x)| | F (x) = 0⃗
]

d x.

(b) Let H : RN →R have a nice gradient. Then, the average number of critical points of H on U is

E |CrtU (H)| =
∫

U
ϕ∇H(x) (⃗0)E

[|det∇2H(x)| | ∇H(x) = 0⃗
]

d x.

3 The Situation On SN

Definition 3.1. We say that x ∈ SN is a critical point on SN if ∇HN ,p (x) is parallel to x.

Definition 3.2. The spherical gradient is defined as

∇sphHN ,p (x) = P⊥
x ∇HN ,p (x),

where P⊥
x = IN − xxT

N is a rank N −1 projection.
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Now, we will attempt to find an appropriate Hessian on the sphere. A plausible guess for what this might
be is the tangential Hessian

∇2
tanHN ,p (x) ≡ P⊥

x ∇2HN ,p (x)P⊥
x .

However, this is a bad idea! Intuitively, due to the curvature of sphere, the Hessian will depend more on
functions outside of the sphere than just on functions on the sphere. For an example, consider

ĤN ,p (x) = HN ,p (x)+ (∥x∥2 −N )

Note that these two hamiltonians are exactly the same on SN , but

∇2
tanĤN ,p (x) ̸= ∇2

tanHN ,p (x).

To derive the “morally as well as formally correct” Hessian, first consider the points

x = (
p

N ,0 · · · ,0), x(ϵ) =
(p

N − ϵ2

2
p

N
+O(ϵ4),ϵ,0, · · · ,0

)
,

with ϵ≪ 1/N . Let ∂xi := δ
δxi

. Then, to second order,

HN ,p (x(ϵ)) = HN ,p (x)+ϵ∂x2 HN ,p (x)+ ϵ

2

(
∂2

x2
HN ,p (x)−N−1/2∂x1 HN ,p (x)

)
.

Definition 3.3. The correct analogue of the Hessian on SN is the spherical Hessian

∇2
sphHN ,p (x) =∇2

tanHN ,p (x)−∇radHN ,p (x)P⊥
x ,

where P⊥
x can be identified as IN−1, and

∇radHN ,p (x) = 1

N
〈∇HN ,p (x), x〉.

Moreover, for pure p-spin models,

∇radHN ,p (x) = pHN ,p (x)

N
,

which can be verified directly from a gradient computation or observed from the fact that

HN ,p (x) = A(x)t p

follows from homogeneity. Combining what we have learned, the big lesson is

E
∣∣CrtSN (HN ,p )

∣∣= ∫
SN

ϕ∇sph HN ,p (x) (⃗0)E
[
|det∇2

sphHN ,p (x)| | ∇sphHN ,p (x) = 0⃗
]

dµVol
N−1(x)

= VolN−1(SN )ϕ∇sph HN ,p (x) (⃗0)E
[
|det∇2

sphHN ,p (x)| | ∇sphHN ,p (x) = 0⃗
]

.

Here, dµVol
N−1(x) is the non-normalized (N −1) volume and

VolN−1(SN ) = 2πN /2N (N−1)/2

Γ(N /2)
= (2πe)n/2eo(N ).

In our next class, we discuss how to compute the expectation in the formula with the following joint law.

Proposition 3.4. The terms
(
HN ,p (x),∇sphHN ,p (x),∇2

tanHN ,p (x)
)

are independent, and moreover:

• HN ,p (x) ∼N (0, N );

• ∇sphHN ,p (x) ∼p
pN (0,P⊥

x ≈ IN−1);
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• ∇2
tanHN ,p (x) ∼

√
p(p −1) N−1

N GOE(N −1)

where GOE(M) is a M ×M symmetric gaussian matrix A such that:

• Ai j ∼N (0,1/M), i ̸= j ;

• Ai i ∼N (0,2/M);

• The Ai j are independent for 1 ≤ i ≤ j ≤ M.
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