
Statistics 291: Lecture 6 (February 8, 2024)

Kac-Rice II: spherical spin glasses without external field

Instructor: Mark Sellke

Scribe: Rushil Mallarapu

1 Spherical Derivatives of the Hamiltonian and Kac-Rice

Let x ∈ SN . Then P⊥
x = In − xx⊤

N is the rank N − 1 projection matrix from RN onto the tangent plane of
SN at x. Formally, this should be a map from Tx RN ∼= RN to Tx SN , but we’ll be somewhat loose with
the identification between the latter and RN−1. Using this, we can define the spherical gradient, (naive)
tangential Hessian, radial derivative, and (correct) spherical Hessian.

∇sphHN ,p (x) = P⊥
x ∇HN ,p (x)

∇2
tanHN ,p (x) = P⊥

x ∇2HN ,p (x)P⊥
x

∇radHN ,p (x) = 1

N
〈∇HN ,p (x), x〉 = p

N
HN ,p (x)

∇2
sphHN ,p (x) =∇2

tanHN ,p (x)−∇radHN ,p (x)P⊥
x .

Note that the radial derivative being a rescaling of the Hamiltonian is special to working with a p-spin
model, by homogeneity.

Recall that last class we derived the Kac-Rice formula for the expected number of critical points of the
p-spin Hamiltonian HN ,p (x):

E
[
CrtSN (HN ,p )

]= ∫
SN

ϕ∇sph HN ,p (x) (⃗0)E
[
|det∇2

sphHN ,p (x)| ∣∣∇sphHN ,p (x) = 0⃗
]

dµvol
N−1(SN ) (1)

Because we’re looking for critical points on the sphere, we needed to define the gradient and Hessian from
the perspective of the sphere to get the right formula. Also note that we’re taking this integral with respect
to the unnormalized N −1-dimensional volume measure on SN . Luckily, all the terms here are relatively
easy to compute, as the spherical derivatives are all Gaussian-flavored:

Proposition 1.1. For all x ∈ SN , (HN ,p (x),∇sphHN ,p (x),∇2
tanHN ,p (x)) are independent, with

(a) HN ,p (x) ∼N (0, N ),

(b) ∇sphHN ,p (x) ∼p
pN (0,P⊥

x
∼= IN−1),

(c) ∇2
tanHN ,p (x) ∼

√
p(p −1)

( N−1
N

)
GOE(N −1).

The last distribution is the Gaussian orthogonal ensemble, where A ∼ GOE(M) if A is a symmetric
random matrix with Ai i ∼N (0,2/M), and Ai j = A j i ∼N (0,1/M), with entries otherwise independent.
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Proof. Recall from lecture 2 that the Hamiltonian is rotationally invariant in distribution. Thus, we can fix
WLOG x = (

p
N ,0, . . . ,0) to be the “north pole.” Now we can compute everything above directly:

(a) We have HN ,p (x) = N−(p−1)/2 · g1...1N p/2 =p
N g1...1 ∼N (0, N ).

(b) Fix any j ̸= 1, and let’s look at [∇sphHN ,p (x)] j . Because we’re projecting onto the tangent space at
the north pole, this is basically computing 〈∇HN ,p (x),e j 〉, for e j the j th standard basis vector. By a
similar computation, this is

〈∇HN ,p (x),e j 〉 = N−(p−1)/2〈G (p)
N , x⊗p−1 ⊗ y +x⊗p−2 ⊗ y ⊗x +·· ·+ y ⊗x⊗p−1〉

= g1... j + g1... j 1 +·· ·+ g j 1...1 ∼p
pN (0,1),

as we’re adding p i.i.d. standard Gaussians. Thus, we get
p

p times a standard Gaussian N − 1-
dimensional vector. Let’s write that last sum as

∑
sym g1...1 j , where this indicates summing over

permutations without eating multiplicity factors.

(c) Fix j ,k ̸= 1. Then repeating the same process as above gives

[∇2
tanHN ,p (x)] j k = N−1/2

∑
sym

g1...1 j k

∼
{

N (0, p(p −1)/N ) j ̸= k

N (0,2p(p −1)/N ) j = k

When j ̸= k, there are p(p −1) distinct i.i.d. factors; when j = k, there are p(p −1)/2 distinct factors,
but each is summed twice, so overall we double the variance. Everything here is independent and
symmetric in j ,k, and the N −1 above then comes from the GOE scaling; its not that important.

Let’s plug this into (1): the integrand is symmetric across x, so fixing x to be the north pole, we get

E
[
CrtSN (HN ,p )

]= VolN−1(SN )ϕ∇sph HN ,p (x) (⃗0)E

[∣∣∣∣∣det

√
p(p −1)

N −1

N
GOE(N −1)−pHN ,p (x)/N IN−1

∣∣∣∣∣
]

.

Note that we don’t need to condition in the expectation because of independence! To get at the inner
expectation, let’s integrate over E = HN ,p (x)/N ; this is the (dimensionless) energy, i.e. its O(1) as N →∞.
This gives, by fixing the radial derivative,

E
[
CrtSN (HN ,p )

]
= VolN−1(SN )ϕ∇sph HN ,p (x) (⃗0)

∫
R
ϕHN ,p (x)/N (E)E

[∣∣∣∣∣det

√
p(p −1)

N −1

N
GOE(N −1)−pE IN−1

∣∣∣∣∣
]

dE .

2 Determinants of GOE Matrices

Using the Kac-Rice formula (1) now reduces to understanding (up to a simple rescaling), expressions of the
form E [|det(GOE(N )− t IN )|]. If we’re experienced with random matrix theory, we can guess that there’s
some function ψ(t ) for which

E [|det(GOE(N )− t IN )|] ?= exp
(
Nψ(t )+o(N )

)
.

The two ingredients that go into this guess are, first, taking logs, so that

log |det(GOE(N )− t IN )| =
N∑

i=1
log |λi − t |,
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with λ1 ≥ ·· · ≥ λN being the (random) eigenvalues of GOE(N ) matrices. Next, we might know that the
empirical eigenvalue distribution should be a semicircle distribution. Specifically, the empirical eigenvalue
distribution is

νN
1

N

N∑
i=1

δλi ,

and the semicircle distribution νSC , with dνSC (x) = 1
2π

p
4−x2 d x, for x ∈ [−2,2]. We can guess that with

high probability, νN is close to νSC . This means that, for any fixed constant ϵ > 0, then as N → ∞, the
following two statements hold w.h.p.:

(a) dBL(νN ,νSC ) ≤ ϵ, where dBL is the Bounded Lipschitz metric:

dBL(νN ,νSC ) = sup
1-Lip f : R→R

∣∣∣∣∫ f dνN −
∫

f dνSC

∣∣∣∣≤ ϵ.

This metric is “equivalent to Wasserstein distance” (i.e. it induces the same topology on probability
measures supported in any fixed compact set) and captures cases where maybe one distribution has
lots of point densities and the other is continuous and concentrated around those points.

(b) λ1, . . . ,λN ∈ [−2−ϵ,2+ϵ].

Remark. In general, we can use random matrix theory to evaluate these Kac-Rice integrals; luckily our
situation is particularly nice.

Thus, we should guess that ψ(t ) = ∫
log |u − t |dνSC . If log was 1-Lipschitz, then we would have

1

N

N∑
i=1

log |λi − t | =
∫

log |u − t |dνN

is within ϵ of ψ(t ) w.h.p. As it turns out, this guess is correct! We’ll start proving the upper bound later; the
lower bound requires more heavy random matrix theory and we won’t cover it now.

Also, ψ has an explicit formula:

ψ(t ) = t 2

4
− 1

2
+1|t |≥2

(
−|t |

p
t 2 −4

4
+ log

(p
t 2 −4+|t |

2

))
.

The correction term in parentheses, which we’ll denote θ(t ), only kicks in for t ̸∈ (−2,2). Graphing ψ(t )

−4 −2 0 2 4

−0.5

0

0.5

1

1.5

ψ(t )
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we see that outside from [−2,2], it diverges logarithmically. As an aside, if you differentiate ψ′(t ) under the
integral, you get the “Stieltjes transform” of νSC .

Combining everything, we get the following exponential growth rate of (1), counting the critical points
over any interval of energies a ≤ HN ,p /N ≤ b.

Theorem 2.1 (Annealed exponential growth rate for the number of critical points). For −∞≤ a < b ≤∞,

lim
N→∞

1

N
logE

[
CrtSN (HN ,p ) with HN ,p (x)/N ∈ [a,b]

]
= max

E∈(a,b)

{
log(p −1)

2
−E 2

(
p −2

4p −4

)
+1|E |≥2

√
p−1

p

θ

(
E

√
p

p −1

)}
.

(In class there was a small mistake, there should not have been a factor of 1/2 on the last term.)

Proof. Recall that

E
[
CrtSN (HN ,p ) with HN ,p (x)/N ∈ [a,b]

]
= VolN−1(SN )ϕ∇sph HN ,p (x) (⃗0)

∫ b

a
ϕHN ,p (x)/N (E)E

[∣∣∣∣∣det

√
p(p −1)

N −1

N
GOE(N −1)−pE IN−1

∣∣∣∣∣
]

dE .

For a fixed E ∈ [a,b], there are 4 contributions to the Kac-Rice formula, up to eo(N ) factors:

(a) VolN−1(SN ) ≈ (2πe)N /2.

(b) φ∇sph HN ,p (x) (⃗0) = (2πp)−N /2.

(c) φHN ,p (x)/N (E) ≈ e−N E 2/2.

(d) the determinant factor: (p(p −1))N /2 exp
(
Nψ

(
E

√
p−1

p

))
.

After a lot of miraculous cancellations and applying the Laplace approximation, the result follows.

Remark. This gives an upper bound for the maximum value of maxx∈SN HN ,p (x), which is asymptotically
sharp for pure p-spin models. Let Φ(E) be the function of E in the curly braces in the statement of Theo-
rem 2.1. Say we know thatΦ(E0) = 0. Then, if a = E0+ϵ for small ϵ> 0 and b =∞, we know maxE≥aΦ(E ) < 0.
Then, by Markov’s inequality, with high probability there are no critical points x with HN ,p (x) ≥ N (E0 +ϵ).
Thus, maxx∈SN HN ,p (x)/N ≤ E0 +ϵ. We’ll return to this later.

Remark. It turns out we don’t know much about the concentration of the number of critical points!

3 The Hoffman-Wielandt Inequality

It remains to prove the upper bound

E [|det(GOE(N )− t IN )|] ≤ exp
(
Nψ(t )+o(N )

)
.

We’ll use concentration of measure of the eigenvalues. Today we’ll prove the Hoffman-Wielandt inequality,
which roughly says that the eigenvalues of a matrix depend in a Lipschitz way on the matrix entries. Next
time we’ll see how this implies the upper bound we want!

Lemma 3.1 (Hoffman-Wielandt Inequality). Let AN , ÃN be N × N symmetric matrices with eigenvalues
λ1 ≥ ·· · ≥λN , λ̃1 ≥ . . . λ̃N respectively. Then

N∑
i=1

|λi − λ̃i |2 ≤
∥∥AN − ÃN

∥∥2
F =

N∑
i , j=1

(AN − ÃN )2
i j .
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This is the L2 analog of the “Weyl inequality,” which is the easier fact that

max
i=1,...,n

|λi − λ̃i | ≤ ∥AN − ÃN∥op.

This can be proven using the Courant-Fischer min-max characterization of eigenvalues.

Proof. The idea is to fix λi , λ̃i , and minimize the RHS ∥AN − ÃN∥2
F . The lemma is effectively the claim that

this is minimized when these matrices have the same eigenvectors.

Without loss of generality, let AN =Λ=

λ1

. . .
λN

 and let ÃN =OΛ̃O⊤, for O an orthogonal N ×N

matrix. Then, we can compute

∥AN − ÃN∥2
F = Tr

(
(AN − ÃN )(AN − ÃN )⊤

)
= Tr(Λ2 + Λ̃2)−2Tr(ΛOΛ̃O⊤).

Minimizing this is equivalent to maximizing the objective

Tr(ΛOΛ̃O⊤) =
N∑

i , j=1
λi λ̃ j O2

i j ,

which is a linear function of O(2), the entrywise square of O; note that for O = I , this expression becomes
exactly the LHS above in the original inequality. Now, note that O(2) is a doubly stochastic matrix, with all
entries between 0 and 1 and

∑
i O2

i j =
∑

j O2
i j = 1. Thus, we can maximize our objective over the space of all

doubly stochastic matrices.
By the Birkhoff–von Neumann Theorem, this space is a convex polytope, with vertices given by permu-

tation matrices, i.e. matrices of the form Pπ for π ∈ΣN , the symmetric group on 1, . . . , N , where

Pπ
i j =

{
1 π(i ) = j

0 else
.

Thus, this maximum is achieved for a permutation matrix:

max
O∈ON

N∑
i , j=1

λi λ̃ j O2
i j = max

π∈ΣN

N∑
i , j=1

λi λ̃ j Pπ
i j = max

π∈ΣN

N∑
i=1

λi λ̃π(i )

Finally, by the rearrangement inequality, we conclude that the latter maximum is achieved for π= id. (For
any other π, there exists i such that π(i +1) < π(i ), and then switching π on those values would increase
the sum.) Thus, the minimum value of the Frobenius norm above is

N∑
i=1

λ2
i + λ̃2

i −2λi λ̃i =
N∑

i=1
|λi − λ̃i |2,

thus completing the proof.
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