
Statistics 291: Lecture 9 (February 20th, 2024)

Langevin dynamics

Instructor: Mark Sellke

Scribe: Xiaodong Yang

1 Langevin dynamics

In today’s lecture, we will switch our attention a little bit to Langevin dynamics. This is widely used for
physical time evolution and is a candidate sampling algorithm. In general, we will prove the fast mixing of
Langevin dynamics for strongly log-concave distributions, or spherical spin glasses at high temperature.
Next class will discuss all temperature, stability and concentration on short time scales.

Definition 1.1 (Langevin dynamics onRN ). Given a Hamiltonian function HN :RN →R, the corresponding
Langvein dynamics is a continuous-time stochastic process which solves the following Ito equation,

dX t =
p

2dBt +β∇H(X t )dt .

Existence and uniqueness of its solutions are readily available as long as ∇H is Lipschitz and the initial
state X0 is determined.

A few remarks follow immediately.

• The Hamiltonian is strongly log-concave if −O(1)IN ≤∇2H(x) ≤−λIN for all x ∈RN .

• Langevin dynamics can also be defined just using Bt through ODEs. To be preciser, given Bt , let Yt

solve the ODE,
Ẏt =β∇H(Yt +

p
2Bt ),

then Yt coincides with X t −
p

2Bt .

• The stationary measure of this continuous-time Markov process is the Gibbs measure µβ(dx) =
eβH(x)dx

Z (β) . With X0 ∼ p0(x), denote pt (x) as the law of X t given by Langevin dynamics. Then Fokker-
Planck equation implies

dpt (x)

dt

∣∣∣∣
t=0

=−divx
[
β∇H(x)p0(x)

]+∆x [p0(x)],

where∆x =∑N
i=1

(
∂
∂xi

)2
corresponding to the heat kernel in heat equations. The first divergence term

can be further expanded to

−divx
[
β∇H(x)p0(x)

]=−divx
(
β∇H(x)

)
p0(x)−β〈∇H(x),∇p0(x)〉,

1



where the second term can be understood as a transport term. If we plug in pt =µβ,

∆x

[
eβH(x)

Z (β)

]
= 1

Z (β)
divx

(
∇x eβH(x)

)
= 1

Z (β)
divx

(
βeβH(x)∇x H(x)

)
.

Therefore, µβ indeed solves the Fokker-Planck equation dpt (x)
dt

∣∣
t=0 = 0, so we should believe it to be

the stationary measure.

1.1 Fast mixing for strongly log-concave distributions

We firstly define the metric of the Wasserstein 2-distance, which quantifies mixing rates.

Definition 1.2. For any two probability measures v, ṽ on RN , we define the Wasserstein 2-distance to be

W2(v, ṽ) =
√

inf
π
Eπ ∥X −Y ∥2,

where the infimum is taken over all possible couplingsπ(x, y), which are defined as probability measures on
(RN )2 with corresponding marginals πx = v,πy = ṽ . The optimal π is called “optimal transport coupling".

Theorem 1.3. Let H : RN → R be λ-strongly concave. Fix x0, y0 ∈ RN , and run Langevin dynamics with
shared Bt respectively,

dX t =
p

2dBt +β∇H(X t )dt , X0 = x0,

dYt =
p

2dBt +β∇H(Yt )dt , Y0 = y0.
(1)

Then for any t ≥ 0, there holds

W2 [law(X t ), law(Yt )] ≤ E∥X t −Yt∥2 ≤ e−2λt ∥X0 −Y0∥2 .

To prove this fast mixing result, we incorporate the following two standard lemmas from convex opti-
mization.

Lemma 1.4. If H :RN →R is λ-strongly concave, then for any x, y ∈RN ,

H(x)−H(y) ≤ 〈x − y,∇H(y)〉− λ∥x − y∥2

2
.

Proof. If λ= 0, concavity directly implies H(x) ≤ H(y)+〈x − y,∇H(y)〉. If not, we find H(x)+ λ
2 ∥x∥2 to be

concave, and

H(x)+ λ

2
∥x∥2 ≤ H(y)+ λ

2
∥y∥2 +〈

x − y,∇H(y)+λy
〉

,

⇒ H(x)−H(y) ≤ 〈x − y,∇H(y)〉− λ∥x − y∥2

2
.

Corollary 1.5. Under the same condition, we also have

〈x − y,∇H(x)−∇H(y)〉 ≤−λ∥x − y∥2.

Proof. By Lemma 1.4, we have

H(x)−H(y) ≤ 〈x − y,∇H(y)〉− λ∥x − y∥2

2
,

H(y)−H(x) ≤ 〈y −x,∇H(x)〉− λ∥x − y∥2

2
.

Sum these two inequalities up to obtain the final result.
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Proof of Theorem 1.3. By subtracting the two terms in (1), we have

d(X t −Yt ) =β (∇H(X t )−∇H(Yt ))dt .

Then it follows by chain rule that

d

dt
∥X t −Yt∥2 = 2

〈
X t −Yt ,

d

dt
(X t −Yt )

〉
= 2β〈X t −Yt ,∇H(X t )−∇H(Yt )〉
≤−2βλ∥X t −Yt∥2.

This is sufficient for Theorem 1.3.

If Y0 ∼ µβ is directly taken from the stationary measure, then every Yt is also distributed as µβ. After
applying Gronwall’s inequality, we obtain

W2(law(X t ),µβ) ≤ e−βλt W2(δX0 ,µβ).

The right handed term is decreasing exponentially with respect to t →∞, and is referred to “fast mixing".

2 Langvein dynamics for spin glasses

We begin this section by defining spherical Langvein dynamics as follows.

Definition 2.1. Let H : SN → R be a Hamiltonian function. (In most cases it should be naturally de-
fined on the whole space RN , as the p-spin models.) The corresponding spherical Langvein dynamics is a
continuous-time stochastic process which solves the following Ito equation,

dX t =
p

2P⊥
X t

dBt +
(
β∇radH(X t )− N −1

N
X t

)
dt . (2)

where P⊥
x = IN − xx⊤

N is a rank-(N −1) projection matrix.

If we apply Ito’s formula immediately,

d∥X t∥2 =
[

2(N −1)−2

〈
X t ,

N −1

N
X t

〉]
dt = 0dt .

So the dynamics always stay on the sphere. The diffusive term cancels out due to P⊥
x . If H ≡ 0, this process

is referred to as the so-called spherical Brownian motion.

Definition 2.2. Suppose HN is “C -bounded of order 2" in the following sense: there exists a universal
constant C > 0 such that

— supx∈XN
|HN (x)| ≤C N ;

— supx∈XN
∥∇HN (x)∥ ≤C

p
N ;

— supx∈XN
∥∇2HN (x)∥op ≤C .

In the case of pure p-spin models, we have seen before that HN is C -bounded with probability 1−e−N for
some fixed C .
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2.1 Fast mixing at high temperature

This section discusses fast mixing of (2) at high temperature β ≤ O(1/C ). The high-level idea is that the
sphere’s own curvature already forces the process to mix fast enough. All our conditions (Definition 2.2
and β≤O(1/C )) are ensuring that the Hamiltonian does not blend the curvature too much.

Lemma 2.3. For any x, y ∈ SN , there hold

∥∇HN (x)−∇HN (y)∥ ≤C∥x − y∥
∥∇radHN (x)−∇radHN (y)∥ ≤ 3C∥x − y∥.

Proof. The fist part is immediate from the Hessian bound,

∥∇HN (x)−∇HN (y)∥ = max
∥z∥=1

〈∇HN (x)−∇HN (y), z〉

= max
∥z∥=1

∫ 1

0
〈y −x,∇2HN (y a +x(1−a))〉da

≤ ∥y −x∥ ·C∥z∥ =C∥y −x∥.

The second part is then due to ∥P⊥
x ∥op = ∥P⊥

y ∥op = 1 and

∥P⊥
x −P⊥

y ∥op = 1

N

∥∥xx⊤− y y⊤∥∥
op ≤ 2∥x − y∥p

N
.

Consequently,

∥∇radHN (x)−∇radHN (y)∥ ≤ ∥P⊥
x −P⊥

y ∥op∥∇HN (x)∥+∥P⊥
y ∥op∥∇HN (x)−∇HN (y)∥ ≤ 3C∥x − y∥.

Finally, we are ready to give the theorem of fast mixing for the spherical Langevin dynamics at high
temperature.

Theorem 2.4. If HN is C -bounded of order 2 as defined in Definition 2.2 and β≤ 1
30C , then using some Bt

coupling, we are able to establish that

d

dt
E∥X t −Yt∥2 ≤− 1

10
∥X t −Yt∥2, (3)

W2 [law(X t ), law(Yt )] ≤ e−t/20 ∥X0 −Y0∥2 . (4)

Proof. Firstly, let’s consider the case HN ≡ 0, which is also called spherical Brownian motion. By subtracting
the equations, we obtain

d(X t −Yt ) =p
2
(
P⊥

X t
−P⊥

Yt

)
dBt − N −1

N
(X t −Yt )dt .

By Ito’s formula,

d∥X t −Yt∥2 =
[

2∥Yt Y ⊤
t −X t X ⊤

t ∥2
F

N 2 −2
N −1

N
∥X t −Yt∥2

]
dt +2

p
2
〈

P⊥
X t

−P⊥
Yt

, X t −Yt

〉
dBt

≤
[

O

(∥X t −Yt∥2

N

)
−2

N −1

N
∥X t −Yt∥2

]
dt −2

p
2

(
1− X ⊤

t Yt

N

)
(Yt +X t )dBt .

After taking expectation, it translates to

d

dt
E∥X t −Yt∥2 ≤−1

2
E∥X t −Yt∥2.
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To proceed, we add back the gradient term β∇H and go over the same procedures,

d(X t −Yt ) =p
2
(
P⊥

X t
−P⊥

Yt

)
dBt +

[
β (∇radHN (X t )−∇radHN (Yt ))− N −1

N
(X t −Yt )

]
dt .

Then it follows that

d∥X t −Yt∥2 =
[

2∥Yt Y ⊤
t −X t X ⊤

t ∥2
F

N 2 −2
N −1

N
∥X t −Yt∥2 +2β〈∇radHN (X t )−∇radHN (Yt ), X t −Yt 〉

]
dt

+2
p

2
〈

P⊥
X t

−P⊥
Yt

, X t −Yt

〉
dBt

≤
[

O

(∥X t −Yt∥2

N

)
−2

N −1

N
∥X t −Yt∥2 +6βC∥X t −Yt∥2

]
dt −2

p
2

(
1− X ⊤

t Yt

N

)
(Yt +X t )dBt .

If β≤ 1/(30C ), we should arrive at

d

dt
E∥X t −Yt∥2 ≤−1

4
E∥X t −Yt∥2.

Some constant dependency can be surely improved, but in spirit, β should be scaled O(1/C ).
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