Statistics 291: Lecture 9 (February 20th, 2024) Langevin dynamics

Instructor: Mark Sellke

Scribe: Xiaodong Yang

1 Langevin dynamics

In today's lecture, we will switch our attention a little bit to Langevin dynamics. This is widely used for physical time evolution and is a candidate sampling algorithm. In general, we will prove the fast mixing of Langevin dynamics for strongly log-concave distributions, or spherical spin glasses at high temperature. Next class will discuss all temperature, stability and concentration on short time scales.

Definition 1.1 (Langevin dynamics on \mathbb{R}^N). Given a Hamiltonian function $H_N : \mathbb{R}^N \to \mathbb{R}$, the corresponding Langvein dynamics is a continuous-time stochastic process which solves the following Ito equation,

$$\mathrm{d}X_t = \sqrt{2}\mathrm{d}B_t + \beta\nabla H(X_t)\mathrm{d}t.$$

Existence and uniqueness of its solutions are readily available as long as ∇H is Lipschitz and the initial state X_0 is determined.

A few remarks follow immediately.

- The Hamiltonian is strongly log-concave if $-O(1)I_N \leq \nabla^2 H(x) \leq -\lambda I_N$ for all $x \in \mathbb{R}^N$.
- Langevin dynamics can also be defined just using B_t through ODEs. To be preciser, given B_t , let Y_t solve the ODE,

$$\dot{Y}_t = \beta \nabla H(Y_t + \sqrt{2}B_t),$$

then Y_t coincides with $X_t - \sqrt{2}B_t$.

• The stationary measure of this continuous-time Markov process is the Gibbs measure $\mu_{\beta}(dx) = \frac{e^{\beta H(x)} dx}{Z(\beta)}$. With $X_0 \sim p_0(x)$, denote $p_t(x)$ as the law of X_t given by Langevin dynamics. Then Fokker-Planck equation implies

$$\left. \frac{\mathrm{d}p_t(x)}{\mathrm{d}t} \right|_{t=0} = -\mathrm{div}_x \left[\beta \nabla H(x) p_0(x) \right] + \Delta_x [p_0(x)],$$

where $\Delta_x = \sum_{i=1}^{N} \left(\frac{\partial}{\partial x_i}\right)^2$ corresponding to the heat kernel in heat equations. The first divergence term can be further expanded to

$$-\operatorname{div}_{x}\left[\beta\nabla H(x)p_{0}(x)\right] = -\operatorname{div}_{x}\left(\beta\nabla H(x)\right)p_{0}(x) - \beta\langle\nabla H(x), \nabla p_{0}(x)\rangle,$$

where the second term can be understood as a transport term. If we plug in $p_t = \mu_\beta$,

$$\Delta_{x}\left[\frac{e^{\beta H(x)}}{Z(\beta)}\right] = \frac{1}{Z(\beta)}\operatorname{div}_{x}\left(\nabla_{x}e^{\beta H(x)}\right) = \frac{1}{Z(\beta)}\operatorname{div}_{x}\left(\beta e^{\beta H(x)}\nabla_{x}H(x)\right).$$

Therefore, μ_{β} indeed solves the Fokker-Planck equation $\frac{dp_t(x)}{dt}\Big|_{t=0} = 0$, so we should believe it to be the stationary measure.

1.1 Fast mixing for strongly log-concave distributions

We firstly define the metric of the Wasserstein 2-distance, which quantifies mixing rates.

Definition 1.2. For any two probability measures v, \tilde{v} on \mathbb{R}^N , we define the Wasserstein 2-distance to be

$$W_2(v, \tilde{v}) = \sqrt{\inf_{\pi} \mathbb{E}^{\pi} \|X - Y\|^2},$$

where the infimum is taken over all possible couplings $\pi(x, y)$, which are defined as probability measures on $(\mathbb{R}^N)^2$ with corresponding marginals $\pi_x = v, \pi_y = \tilde{v}$. The optimal π is called "optimal transport coupling".

Theorem 1.3. Let $H : \mathbb{R}^N \to \mathbb{R}$ be λ -strongly concave. Fix $x_0, y_0 \in \mathbb{R}^N$, and run Langevin dynamics with shared B_t respectively,

$$dX_t = \sqrt{2}dB_t + \beta \nabla H(X_t)dt, \quad X_0 = x_0,$$

$$dY_t = \sqrt{2}dB_t + \beta \nabla H(Y_t)dt, \quad Y_0 = y_0.$$
(1)

Then for any $t \ge 0$, there holds

$$W_2[\operatorname{law}(X_t), \operatorname{law}(Y_t)] \le \mathbb{E} ||X_t - Y_t||^2 \le e^{-2\lambda t} ||X_0 - Y_0||^2.$$

To prove this fast mixing result, we incorporate the following two standard lemmas from convex optimization.

Lemma 1.4. If $H : \mathbb{R}^N \to \mathbb{R}$ is λ -strongly concave, then for any $x, y \in \mathbb{R}^N$,

$$H(x) - H(y) \le \langle x - y, \nabla H(y) \rangle - \frac{\lambda \|x - y\|^2}{2}.$$

Proof. If $\lambda = 0$, concavity directly implies $H(x) \le H(y) + \langle x - y, \nabla H(y) \rangle$. If not, we find $H(x) + \frac{\lambda}{2} ||x||^2$ to be concave, and

$$H(x) + \frac{\lambda}{2} \|x\|^2 \le H(y) + \frac{\lambda}{2} \|y\|^2 + \langle x - y, \nabla H(y) + \lambda y \rangle,$$

$$\Rightarrow \quad H(x) - H(y) \le \langle x - y, \nabla H(y) \rangle - \frac{\lambda \|x - y\|^2}{2}.$$

Corollary 1.5. Under the same condition, we also have

$$\langle x - y, \nabla H(x) - \nabla H(y) \rangle \le -\lambda ||x - y||^2.$$

Proof. By Lemma 1.4, we have

$$\begin{split} H(x) - H(y) &\leq \langle x - y, \nabla H(y) \rangle - \frac{\lambda \|x - y\|^2}{2}, \\ H(y) - H(x) &\leq \langle y - x, \nabla H(x) \rangle - \frac{\lambda \|x - y\|^2}{2}. \end{split}$$

Sum these two inequalities up to obtain the final result.

Proof of Theorem 1.3. By subtracting the two terms in (1), we have

$$d(X_t - Y_t) = \beta \left(\nabla H(X_t) - \nabla H(Y_t) \right) dt.$$

Then it follows by chain rule that

$$\frac{\mathrm{d}}{\mathrm{d}t} \|X_t - Y_t\|^2 = 2\left\langle X_t - Y_t, \frac{\mathrm{d}}{\mathrm{d}t}(X_t - Y_t) \right\rangle$$
$$= 2\beta \left\langle X_t - Y_t, \nabla H(X_t) - \nabla H(Y_t) \right\rangle$$
$$\leq -2\beta\lambda \|X_t - Y_t\|^2.$$

This is sufficient for Theorem 1.3.

If $Y_0 \sim \mu_\beta$ is directly taken from the stationary measure, then every Y_t is also distributed as μ_β . After applying Gronwall's inequality, we obtain

$$W_2(\operatorname{law}(X_t),\mu_\beta) \le e^{-\beta\lambda t} W_2(\delta_{X_0},\mu_\beta).$$

The right handed term is decreasing exponentially with respect to $t \to \infty$, and is referred to "fast mixing".

2 Langvein dynamics for spin glasses

We begin this section by defining spherical Langvein dynamics as follows.

Definition 2.1. Let $H: S_N \to \mathbb{R}$ be a Hamiltonian function. (In most cases it should be naturally defined on the whole space \mathbb{R}^N , as the *p*-spin models.) The corresponding spherical Langvein dynamics is a continuous-time stochastic process which solves the following Ito equation,

$$dX_t = \sqrt{2}P_{X_t}^{\perp} dB_t + \left(\beta \nabla_{\text{rad}} H(X_t) - \frac{N-1}{N} X_t\right) dt.$$
 (2)

where $P_x^{\perp} = I_N - \frac{xx^{\top}}{N}$ is a rank-(N-1) projection matrix.

If we apply Ito's formula immediately,

$$\mathbf{d} \|X_t\|^2 = \left[2(N-1) - 2\left\langle X_t, \frac{N-1}{N}X_t\right\rangle\right] \mathbf{d}t = 0\mathbf{d}t.$$

So the dynamics always stay on the sphere. The diffusive term cancels out due to P_x^{\perp} . If $H \equiv 0$, this process is referred to as the so-called *spherical* Brownian motion.

Definition 2.2. Suppose H_N is "*C*-bounded of order 2" in the following sense: there exists a universal constant C > 0 such that

- $\sup_{x \in X_N} |H_N(x)| \le CN;$
- $\sup_{x \in X_N} \|\nabla H_N(x)\| \le C\sqrt{N};$
- $\sup_{x \in X_N} \|\nabla^2 H_N(x)\|_{op} \le C.$

In the case of pure *p*-spin models, we have seen before that H_N is *C*-bounded with probability $1 - e^{-N}$ for some fixed *C*.

2.1 Fast mixing at high temperature

This section discusses fast mixing of (2) at high temperature $\beta \le O(1/C)$. The high-level idea is that the sphere's own curvature already forces the process to mix fast enough. All our conditions (Definition 2.2 and $\beta \le O(1/C)$) are ensuring that the Hamiltonian does not blend the curvature too much.

Lemma 2.3. For any $x, y \in S_N$, there hold

$$\|\nabla H_N(x) - \nabla H_N(y)\| \le C \|x - y\|$$
$$\|\nabla_{\mathrm{rad}} H_N(x) - \nabla_{\mathrm{rad}} H_N(y)\| \le 3C \|x - y\|.$$

Proof. The fist part is immediate from the Hessian bound,

$$\begin{aligned} \|\nabla H_N(x) - \nabla H_N(y)\| &= \max_{\|z\|=1} \langle \nabla H_N(x) - \nabla H_N(y), z \rangle \\ &= \max_{\|z\|=1} \int_0^1 \langle y - x, \nabla^2 H_N(ya + x(1-a)) \rangle \mathrm{d}a \\ &\leq \|y - x\| \cdot C\|z\| = C\|y - x\|. \end{aligned}$$

The second part is then due to $\|P_x^{\perp}\|_{op} = \|P_y^{\perp}\|_{op} = 1$ and

$$\|P_{x}^{\perp} - P_{y}^{\perp}\|_{op} = \frac{1}{N} \|xx^{\top} - yy^{\top}\|_{op} \le \frac{2\|x - y\|}{\sqrt{N}}.$$

Consequently,

$$\|\nabla_{\text{rad}}H_N(x) - \nabla_{\text{rad}}H_N(y)\| \le \|P_x^{\perp} - P_y^{\perp}\|_{op} \|\nabla H_N(x)\| + \|P_y^{\perp}\|_{op} \|\nabla H_N(x) - \nabla H_N(y)\| \le 3C \|x - y\|.$$

Finally, we are ready to give the theorem of fast mixing for the spherical Langevin dynamics at high temperature.

Theorem 2.4. If H_N is *C*-bounded of order 2 as defined in Definition 2.2 and $\beta \leq \frac{1}{30C}$, then using some B_t coupling, we are able to establish that

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}\|X_t - Y_t\|^2 \le -\frac{1}{10}\|X_t - Y_t\|^2,\tag{3}$$

$$W_2[\operatorname{law}(X_t), \operatorname{law}(Y_t)] \le e^{-t/20} \|X_0 - Y_0\|^2.$$
(4)

Proof. Firstly, let's consider the case $H_N \equiv 0$, which is also called spherical Brownian motion. By subtracting the equations, we obtain

$$d(X_t - Y_t) = \sqrt{2} \left(P_{X_t}^{\perp} - P_{Y_t}^{\perp} \right) dB_t - \frac{N-1}{N} (X_t - Y_t) dt.$$

By Ito's formula,

$$\begin{aligned} \mathbf{d} \|X_{t} - Y_{t}\|^{2} &= \left[\frac{2\|Y_{t}Y_{t}^{\top} - X_{t}X_{t}^{\top}\|_{F}^{2}}{N^{2}} - 2\frac{N-1}{N}\|X_{t} - Y_{t}\|^{2}\right] \mathbf{d}t + 2\sqrt{2}\left\langle P_{X_{t}}^{\perp} - P_{Y_{t}}^{\perp}, X_{t} - Y_{t}\right\rangle \mathbf{d}B_{t} \\ &\leq \left[O\left(\frac{\|X_{t} - Y_{t}\|^{2}}{N}\right) - 2\frac{N-1}{N}\|X_{t} - Y_{t}\|^{2}\right] \mathbf{d}t - 2\sqrt{2}\left(1 - \frac{X_{t}^{\top}Y_{t}}{N}\right)(Y_{t} + X_{t}) \mathbf{d}B_{t}.\end{aligned}$$

After taking expectation, it translates to

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{E} \|X_t - Y_t\|^2 \le -\frac{1}{2} \mathbb{E} \|X_t - Y_t\|^2.$$

To proceed, we add back the gradient term $\beta \nabla H$ and go over the same procedures,

$$\mathbf{d}(X_t - Y_t) = \sqrt{2} \left(P_{X_t}^{\perp} - P_{Y_t}^{\perp} \right) \mathbf{d}B_t + \left[\beta \left(\nabla_{\mathrm{rad}} H_N(X_t) - \nabla_{\mathrm{rad}} H_N(Y_t) \right) - \frac{N-1}{N} \left(X_t - Y_t \right) \right] \mathbf{d}t.$$

Then it follows that

$$\begin{aligned} \mathbf{d} \| X_t - Y_t \|^2 &= \left[\frac{2 \| Y_t Y_t^\top - X_t X_t^\top \|_F^2}{N^2} - 2 \frac{N-1}{N} \| X_t - Y_t \|^2 + 2\beta \langle \nabla_{\mathrm{rad}} H_N(X_t) - \nabla_{\mathrm{rad}} H_N(Y_t), X_t - Y_t \rangle \right] \mathbf{d}t \\ &+ 2\sqrt{2} \left\langle P_{X_t}^\perp - P_{Y_t}^\perp, X_t - Y_t \right\rangle \mathbf{d}B_t \\ &\leq \left[O\left(\frac{\| X_t - Y_t \|^2}{N} \right) - 2 \frac{N-1}{N} \| X_t - Y_t \|^2 + 6\beta C \| X_t - Y_t \|^2 \right] \mathbf{d}t - 2\sqrt{2} \left(1 - \frac{X_t^\top Y_t}{N} \right) (Y_t + X_t) \mathbf{d}B_t. \end{aligned}$$

If $\beta \leq 1/(30C)$, we should arrive at

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{E} \|X_t - Y_t\|^2 \le -\frac{1}{4} \mathbb{E} \|X_t - Y_t\|^2.$$

Some constant dependency can be surely improved, but in spirit, β should be scaled O(1/C).